DIII-D TRANSP Users Meeting

^{by} B.A. Grierson, A. Pankin, S.R. Haskey, A. Ashourvan

Princeton Plasma Physics Laboratory

Presented at DIII-D TRANSP Users Meeting

June 8, 2021

- TRANSP Users Kickoff
- TRANSP Code Update
- Introductory topic: Follow the power, from injected power to heat diffusivities
- Q&A and discussions

Why Have a TRANSP Users Group and Meeting?

- There are (currently) 115 DIII-D researchers who have identified as TRANSP users and receive emails at <u>d3d-transp@fusion.gat.com</u>
 - There are 129 user directories in /fusion/projects/codes/transp/
- TRANSP has been evolving and will continue to evolve
 - Major code modernization has occurred in the background without impact on the user community
- OMFIT has made basic TRANSP submissions at DIII-D relatively easy
 - There are capabilities well beyond the standard "interpretive" TRANSP run, and you have the power to unlock these capabilities with appropriate effort and commitment
 - Even though best efforts have been made by the scientific staff (us/you), special cases will always appear (i.e. mixed H/D plasmas one recent example)

TRANSP is a Comprehensive, Natively Time-Dependent Interpretive and Predictive Equilibrium, Power, Particle and Momentum Balance Code

Natively time-dependent

- All equations solved incorporate d/dt terms
 - Poloidal flux diffusion, particle, energy and momentum balance, heating, fueling and current drive sources
- Neutral beam slowing down treated numerically with NUBEAM rather than asymptotically
- Equilibrium from input (gEQDSK), self-consistent Grad-Shafranov (TEQ) or free-boundary (ISOLVER)
- Heating, fueling and current drive sources mapped to sqrt. normalized toroidal flux ρ for solving flux-surface average transport equations
- Flexibility to select what is <u>input</u> and what is <u>output</u>
 - Interpretative (specify EQ, ne, Te, Ti, etc...)
 vs. predictive (EQ, TGLF, EPED1-NN, ...)
- TRANSP Website has references and links
 - Also see <u>https://doi.org/10.1080/15361055.2017.1398585</u>

FUSION SCIENCE AND TECHNOLOGY · VOLUME 74 · 101–115 · JULY–AUGUST 2018 @ American Nuclear Society Dob: https://doi.org/10.1080/1056.01055.2017.1398585 @ Create for working

Orchestrating TRANSP Simulations for Interpretative and Predictive Tokamak Modeling with OMFIT

B. A. Grierson, ⁰* X. Yuan, ^a M. Gorelenkova, ^a S. Kaye, ^a N. C. Logan, ^a O. Meneghini, ^b S. R. Haskey, ^a J. Buchanan, ^c M. Fitzgerald, ^c S. P. Smith, ^b L. Cui, ^a R. V. Budny, ^a and F. M. Poli^a

^aPrinceton Plasma Physics Laboratory, Princeton, New Jersey 08540 ^bGeneral Atomics, San Diego, California 92121 ^cCCFE, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom

Received August 4, 2017 Accepted for Publication October 15, 2017

⊗ANS

TRANSP is Fundamentally New and Very Powerful

- TRANSP team is Francesca Poli, Jai Sachdev, Marina Gorelenkova, Josh Breslau, Alexei Pankin, Gopan Perumpilly + hundreds of users (you!)
- Refactoring work continues: Not legacy Fortran

Introductory Topic: Follow the power, from injected power to heat diffusivities

One Common Flowchart of how TRANSP is Run for Analysis (q Analysis) and Kinetic EFITs (Resistive Diffusion)

MDSplus shows Pinj, Thomson and CER give me temperature profiles, how does TRANSP turn that into a heat diffusivity?

- First a sketch, for quantity X, flux F and sources and sinks s_i⁺, s_i⁻
 - i.e. X = energy (3/2nT), F = energy flux , s = heating and radiation

 $\frac{\partial X}{\partial t} + \nabla \cdot \mathbf{F} = \sum_{i} s_{j}^{+} - s_{j}^{-}$

Time evolution of plasma fluid variable such as density, temperature, rotation.

Example: your fit to Thomson density or CER Ti on rho or psi in time Watch out for large d/dt! Sources of heat, particles, momentum. Losses such as radiation.

Example: NBI heating to ions and electrons and fueling in NUBEAM, EC heating using TORAY, recycling particle flux from FRANTIC, CX losses from FRANTIC, radiation losses from your Prad fits

MDSplus shows Pinj, Thomson and CER give me temperature profiles, how does TRANSP turn that into a heat diffusivity?

From divergence of flux, integrate numerically to get the flux

Use divergence theorem $\int \nabla \cdot \mathbf{F} dV = \oint \mathbf{F} \cdot d\mathbf{A}$ $F = \frac{1}{A} \int \left(\sum_{i} s_{j}^{+} - s_{j}^{-} - \frac{\partial X}{\partial t} \right) dV$ Volume integrating the divergence of a flux is the same as a surface integral of the flux dotted into area vector. For tokamak radial transport, this is simply F*A where A is the area of the surface.

Cumulative volume integral of sources minus sinks minus dX/dt is the particle, energy and momentum "flow"

Divergence of flux

MDSplus shows P_{inj}, Thomson and CER give me temperature profiles, how does TRANSP turn that into a heat diffusivity?

Assume purely diffusive transport to arrive at particle, heat, momentum diffusion coefficient

Fick's Law $F = -D\nabla X$

 $D = -F/\nabla X$

Diffusion is the flux (integral of source-sink-d/dt) divided by the gradient of the profile Derivatives of profiles can be very uncertain!

Heat diffusivities oft-quoted in the literature, identifying regions of improved or degraded confinement, etc...

R. Pinsker et. al. EPJ Web of Conferences 87 02003 (2015)

Figure 3. Deduced ion and electron heat diffusivities from TRANSP for NB-only (a) and NB+ECH (a) cases.

Aside: Fick's Law vs. Stiff Transport

- Balance equivalent to drawing a straight line from the origin to the intersection of flux and gradient
 - Slope is D, χ
- Does not uniquely determine a change in either stiffness or critical gradient

Worked Example: DIII-D Daily Morning Reference Shot

- Power ramp
- L-mode, H-mode phases

Worked Example: DIII-D Daily Morning Reference Shot

- Profiles fit on 20 ms EFIT timebase with +/- data window
 - Oscillations evident from time history, could be data quality, could be NBI modulation
 - Dynamic phase clear during power ramp at 4.8 seconds

Dominant Heating Source is NBI; NUBEAM Used

NUBEAM Inputs

- Geometry
 - Time independent
 - Position of sources, distance to plasma, shape of aperture, focus, divergence
- Injection
 - Time dependent
 - Voltage, species mix, power

Dominant Heating Source is NBI; NUBEAM Used

NUBEAM Inputs

- Geometry
 - Time independent
 - Position of sources, distance to plasma, shape of aperture, focus, divergence
- Injection
 - Time dependent
 - Voltage, species mix, power

Dominant Heating Source is NBI; NUBEAM Used

NUBEAM Outputs

- Beam losses due to orbits, shine-thu, internal and external CX
- Beam neutral distribution in 3D
- Fast-ion distribution function
- Heating to ions and electrons
- Fueling of ions and electrons
- Neutron rate
- Fusion power

D3D 163303A22 t=2.95s

16

- Many terms in power balance, hard to remember them all and variable names
- TRANSP has built-in "Multiplots" that show all terms for each TRANSP run
- Key ones are
 - EEBAL, IEBAL, EPBAL, MOBAL
- Summing the balance terms with appropriate signs is the divergence of the flux

				TRANS	6P GUI			•	
Device =	'DIII-D'							•	:2
Shot = 16	3303							•	0
Times (ms] = [2800,	2900, 30	00]					?	۲
TRANSP F	Run = 012	29'							
FRANSP id	: 163303A	29							
Output Type = MDS									d
		Ch	eck if MDSplus (data for	runID 16	3303A29 is available			
			Successful TF	ANSP	runs for ru	unID: 163303A			
			1	Vext ava	ailable rur	nD			
			TR	ANSP m	nonitor we	bsite			
Did tr_c	leanup							C	?
Run Plot	RPLOT	TRXPL	TIME SLICES	FBM	BIRTH	Load Existing Run	Cleanup Run		
			Basi	c Plottin	ng of Sing	le Run			
			OMFIT[TRANSP	"]['GUIS']['	PLOTgui']			
		Ca	n't find somethin	ig? >> l	Jpdate Pl	ot MDS Dictionary <<			
Data Type	e = Multi							•	С
Filter = 'iebal'									C
MDS quantity = IEBAL: ION POWER BALANCE								•	d
Slice in =								•	С
X axis =	'X'							-	C
Plot optio	ns = {'line	style': '-', '	marker': "}						C
					Plot <				

- Many terms in power balance, hard to remember them all and variable names
- TRANSP has built-in "Multiplots" that show all terms for each TRANSP run
- Key ones are
 - EEBAL, IEBAL, EPBAL, MOBAL
- Summing the balance terms with appropriate signs is the divergence of the flux

- Many terms in power balance, hard to remember them all and variable names
- TRANSP has built-in "Multiplots" that show all terms for each TRANSP run
- Key ones are
 - EEBAL, IEBAL, EPBAL, MOBAL
- Summing the balance terms with appropriate signs is the divergence of the flux

• Divergence of flux

– EETR_OBS, IETR_OBS, EPTR_OBS, AMTR_OBS

B.A. Grierson / DIII-D TRANSP Users / June 2021

• Volume integral of divergence of flux is the power flow

B.A. Grierson / DIII-D TRANSP Users / June 2021

Let's Look at a Time Window that's More or Less Stationary

 Power/particle/momentum flows through surface

Total Power Flow is Split Between Conducted and Convected (from Particle Balance)

- For this example, we have set the particle confinement time to be long (~ second)
 - Results in little recycling particle flux
 - Results in little convected energy flux
- Accurate recycling needed for accurate conducted flux and heat diffusivity at the edge
 - Transition region from use of core vs boundary codes
 - Directly impacts arguments like ratio D/χ

Putting the Pieces Together; Once Conducted Electron Power is Computed, Heat Diffusivity is Calculated from Geometric Terms and Temperature Gradient

NATIONAL FUSION FACILITY

Similar for ion power balance

Aside: Ti/Te and Ion-Electron Exchange

- Power balance includes "exchange" or "equipartition" flux, transferring power between ions and electrons $q_{i\rightarrow e} \sim n_e^2 / T_e^{3/2} (T_i T_e)$
- Big where n big, T small, pulls temperatures together (edge!)
- Recent work at DIII-D refining edge T_i for this reason

Summary of Simple Example of DIII-D Power Balance

• The balance equations require accurate heating and fueling sources

- Directly affect the power and particle source densities

• The balance equations require accurate measurements of the profiles

- Both time (d/dt included in power balance) and space (derivative used for diffusivities)
- We have worked a simple example following the power from beam injection → absorption → slowing down → heating → power flow → conduction → finally arriving at heat diffusivity

Path Forward and User Feedback

TRANSP Submission will be Updated Soon

- The way that we submit and retrieve TRANSP runs from DIII-D will change in the near future (but we will still support with OMFIT of course, may be unchanged experience for many users).
- The use of globus certificates for submission to the PPPL computing cluster (aka TRANSP Grid) will no longer be supported.
- There are other options that will be supported.
 - A "container" for TRANSP that can be executed on a local computing cluster (i.e. iris) or on a cloud-based server. This is how some of our colleagues around the world run TRANSP.
 - Login to a HPC user facility where a version of TRANSP is built and maintained. Here a login will be required for that facility.
- If you have a strong opinion about one of these it may help us prioritize and identify the required follow-up actions.

Some User Feedback and and Recommendations

- Request to improve how NUBEAM handles fast ions in the SOL
- Regardless of how submissions/runs change, preserve archival of TRANSP data in mdsplus and/or a central location
- Requests to gain access to source code to understand how quantities are calculated
- Modernization, in its solution methods, I/O, speed, and capabilities
- A better way of plotting output (with sophisticated scripting, smoothing, and calculations like the TRANSP RPLOT)
- One of the fast NUBEAM alternatives to be available (RABBIT, for example).
- Improved and updated documentation
- Adding capabilities for interpreting LLAMA measurements for more accurate transport calculations in the pedestal
- Updated and/or add new transport models
- Advanced fueling (assume this means pellets, SMBI, realistic gas puff)
- Self-consistent edge and SOL model; reduced or higher fidelity

Conclusions

- Key strength of TRANSP is the engaged user community
- Intended to have more regular DIII-D TRANSP Users Meetings
 - Note TRANSP office hours offered every Monday, 9:00 a.m. Pacific on Zoom
- Requesting suggestions for upcoming topics
 - Particle balance (incl. mixed isotopes)?
 - Momentum balance (collisional torque, JxB torque, ripple, NTV)?
 - Predictive TRANSP (equilibrium, core, pedestal)?
 - Heating and current drive?
 - DT fusion power simulations?

