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This �le douments a module alled PEDESTAL, whih an be used to predit the pedestal of type I ELMy

H-mode plasma. The PEDESTAL module implements the models for the L-H transition, pedestal density and

pedestal temperature. Note, the PEDESTAL module has been tested and used when ompiled with ags suh

that double preision is used.

1 L-H transition model

1.1 Power threshold

In the empirial model developed by Y. Shimomura [1℄, it is assumed that plasma makes a transition from

L-mode to H-mode when the power rossing the separatrix (P

loss

) rises above a power threshold (P

L�H

):
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The power threshold for the transition to H-mode is alulated using the following formula,
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where A

H

is the hydrogeni mass in AMU, B

T

is the vauum toroidal magneti �eld at major radius R along

the ux surfae in Tesla, R is the major radius in meters, �n

e20

is the line average density in units of 10

20

m

�3

and a is the minor radius in meters. The RMS deviation of this model is 27%.

2 H-mode density model

2.1 A simple empirial model

In this empirial model [2, 3℄, it is assumed that the pedestal density is proportional to the line averaged

eletron density. It was found that the best �t to data from the ITPA pedestal database version 3.1 is

n

ped

= 0:71�n

e

; (3)

where n

ped

is the pedestal density in the unit of m

3

and �n

e

is the line averaged eletron density in the unit

of m

3

. When this model is ompared with the 533 data points, the average logarithmi RMS deviation is

found to be about 12.1%.

3 H-mode temperature model

3.1 Model with width based on magneti and ow shear stabilization

This model is given by Eq. (13) in Ref. [5℄. It was assumed in this model that the pressure gradient within

the pedestal region is onstant and limited by the �rst stability of the ballooning mode. Then, the total

pressure at the top of the pedestal (p

ped

) is
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where n

ped

and T

ped

are the density and temperature at the top of the pedestal, k is the Boltzmann's onstant,

� is the pedestal width and (�p=�r)



is the ritial pressure gradient of ballooning mode. Rewriting Eq. (4),

one an obtain the value of T

ped

,
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given the value of the pressure gradient and the width of the pedestal region.

In this model, the width of the pedestal, �, is assumed to be determined by a ombination of magneti

and ow shear stabilization of drift modes [4℄,

� = C

W

�s

2

: (6)

where s is the magneti shear, � is the ion gyro-radius at the inner edge of the steep gradient region of the

pedestal and C

W

is a onstant of proportionality hosen to optimize the agreement with experimental data.

The �rst stability ballooning mode limit is approximated by
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where the magneti q and shear s are evaluated one pedestal width away from the separatrix, R is the major

radius, B

T

is the vauum toroidal magneti �eld evaluated at major radius R, �

95

is the elongation at the

95% magneti surfae (�

95

= 0:914�

x

, where �

x

is the elongation at the separatrix) and Æ

95

is the triangulrity

at the 95% magneti surfae (Æ

95

= 0:914Æ

x

, where Æ

x

is the triangularity at the separatrix).

After ombining Eqs. 5, 6 and 7 with some algebra, the following expression an be obtained for the

pedestal temperature [5℄:
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where T

ped

is the pedestal temperature in the unit of keV, A

H

is the average hydrogeni ion mass in the

unit of AMU and n

ped

is the eletron density at the top of the pedestal in units of m

3

.

The magneti q has a logarithmi singularity at the separatrix. At one pedestal width away from the

separatrix, the magneti q is approximated by
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where r = a�� is the position of the top of the pedestal and I is the plasma urrent. The magneti shear,

s = � ln q=� ln r, whih is omputed using the magneti q from Eq. (9), is then redued by the e�et of the

bootstrap urrent, as desribed in Ref. [5℄. Sine the pedestal width is needed to ompute the magneti q, the

magneti shear, s, and the normalized pressure gradient �



, and sine the pedestal width is a funtion of the

pedestal temperature, the right hand side of Eq. (8) for the pedestal temperature depends nonlinearly on the

pedestal temperature. Consequently, a non-linear equation solver is required to solve Eq. (8) to determine

T

ped

.

The oeÆient C

W

in the expressions for the pedestal width [Eq. (6)℄ and the pedestal temperature

[Eq. (8)℄ is determined by alibrating the model for the pedestal temperature against 533 data points for type

I ELMy H-mode plasmas obtained from the International Pedestal Database version 3.1, using disharges

from ASDEX-U, DIII-D, JET, and JT-60U tokamaks, as desribed in Ref. [5℄. Ion temperature measurements

were used for the pedestal temperature whenever they were available. However, this pedestal temperature

model does not distinguish between eletron and ion temperature. It is found that the value C

W

= 2:42

yields a minimum logarithmi RMS deviation of about 32.0% for this data.

3.2 Model with width based on ow shear stabilization

This pedestal temperature model, whih is given by Eq. (19) in Ref. [5℄, employs similar approah from se-

tion 3.1, but with di�erent saling of the width of the pedestal. The width of the pedestal, �, is derived from
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the assumption that the E

r

�B suppression of long wavelength modes is assumed to be the relevant fator in

establishing the edge transport barrier. The loal growth of the long wavelength modes an be estimated by

sound speed divided by the onnetion length between the bad urvature region, the destabilizing urvature

region on the outer side of the torus, and the good urvature region, the stabilizing urvature region on the

inner side of the torus, in the pedestal region. The following result for the pedestal width is obtained:

� = C

W

p

�Rq: (10)

where � is the gyro-radius, R is the major radius, q is the safety fator and C

W

is a onstant of proportionality

hosen to optimize the agreement with experimental data.

After ombining Eqs. 5, 7 and 10 with some algebra, the following expression an be obtained for the

pedestal temperature in the unit of keV:
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where A

H

is the average hydrogeni ion mass in AMU and n

ped

is the eletron density at the top of the

pedestal in units of m

3

. Note that Eq. 11 is a non linear equation as explained in setion 3.1. The oeÆient

C

W

in the expressions for the pedestal width [Eq. (10)℄ and the pedestal temperature [Eq. (11)℄ is determined

by alibrating the model for the pedestal temperature against 533 data points for type I ELMy H-mode

plasmas obtained from the International Pedestal Database version 3.1, using disharges from ASDEX-U,

DIII-D, JET, and JT-60U tokamaks, as desribed in Ref. [5℄. It is found that the value C

W

= 0:22 yields a

minimum logarithmi RMS deviation of about 30.8% for this data [5℄.

3.3 Model with width based on normalized poloidal pressure

This pedestal temperature model, whih is given by Eq. (29) in Ref. [5℄, employs similar approah with the

model in setion 3.1, but uses di�erent saling of the pedestal width. The width of the temperature pedestal,

�, is taken from the width saling that �ts to DIII-D database [6℄,

� = C

W

p

�

�

R: (12)

where �

�

is the poloidal normalized pressure, R is the major radius and C

W

is a onstant of proportionality

hosen to optimize the agreement with experimental data. In the steep gradient region of the pedestal, the

pressure gradient is assumed to be onstant and to be limited by the ideal, short-wavelength, ideal MHD

ballooning limit, whih is desribed in Eq. 7 above.

After ombining Eqs. 5, 7 and 12 with some algebra, the following expression an be obtained for the

pedestal temperature in the unit of keV:
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where n

ped

is the eletron density at the top of the pedestal in units of m

3

, q

95

is the safety fator at 95%

ux surfae and g

s

is the shaping fator, whih is de�ned as

g

s

=

(1 + �
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Note that Eq. 13 is a non linear equation as explained in setion 3.1. The oeÆient C

W

in the expressions

for the pedestal width [Eq. (12)℄ and the pedestal temperature [Eq. (13)℄ is determined by alibrating the

model for the pedestal temperature against 533 data points for type I ELMy H-mode plasmas obtained from

the International Pedestal Database version 3.1, using disharges from ASDEX-U, DIII-D, JET, and JT-60U

tokamaks, as desribed in Ref. [5℄. It is found that the value C

W

= 0:021 yields a minimum logarithmi

RMS deviation of about 32.9% for this data [5℄.
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3.4 Thermal Condution Model I

This model is given by Eq. (2) in Ref. [8℄. If the pedestal stored energy, W

ped

, is known, the pedestal

temperature an be found as

T

ped

=

W

ped

2kn

ped

(0:92V )

(15)

where V is the plasma volume. Note that the onstant of 0.92 is the fration of the total volume oupied

by the pedestal [7℄. The plasma volume an be estimated as

V � 2�Ra

2

� (16)

By �tting to all types of ELMy H-mode disharges in the pedestal database DB3V2 [8℄, it was found that

the pedestal stored energy is

W
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where I is the plasma urrent in unit of MA, P

loss

is the loss power in unit of MW, n

19

is the density in the

unit of 10

19

partiles per m

3

, � is the inverse aspet ratio and F

q

is the shaping fator (� q

95

=q

yl

, where

q

95

is the safety fator at 95% ux surfae and q

yl

is the ylindrial safety fator de�ned as 5�a

2

B=RI).

This formula yields the RMSE of 23.5% with the data [8℄. This saling satis�es both the Kadomtsev and

the gyro-Bohm onstraints with B�

ped

/ � �

�3

ped

�

�1:3

ped

.

By ombining Eqs. 15, 16 and 17, the pedestal temperature in unit of keV an be found as
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3.5 Thermal Condution Model II

In this model, a similar approah in setion 3.4 is used. By �tting to only type I ELMy H-mode disharges

in the pedestal database DB3V2 [8℄, it is found that the pedestal stored energy is
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This formula yields the RMSE of 18.1% with the data [8℄. By ombining Eqs. 15, 16 and 19, the pedestal

temperature in unit of keV an be found as
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